Solution to Problem 3) Let $f(t) = e^{-t}t^z$ and $g'(t) = t^{-1}$. Integration by parts yields

$$\int_0^\infty f(t)g'(t)dt = f(t)g(t)|_0^\infty - \int_0^\infty f'(t)g(t)dt.$$

Given that $g(t) = \ln t$, it is seen that $\lim_{t\to 0} f(t) g(t) = \lim_{t\to 0} (e^{-t}t^z \ln t)$ is zero when Re(z) > 0, and that $\lim_{t\to \infty} (e^{-t}t^z \ln t)$ is also zero, irrespective of the value of z. Consequently,

$$\begin{split} \Gamma(z) &= -\int_0^\infty f'(t)g(t)\mathrm{d}t = -\int_0^\infty (e^{-t}t^z)' \ln t \,\mathrm{d}t \\ &= -\int_0^\infty (-e^{-t}t^z + e^{-t}zt^{z-1}) \ln t \,\mathrm{d}t = \int_0^\infty e^{-t}(t-z)t^{z-1} \ln t \,\mathrm{d}t \,, \ \ \mathrm{Re}(z) > 0. \end{split}$$